CWE

Common Weakness Enumeration

A community-developed list of SW & HW weaknesses that can become vulnerabilities

New to CWE? click here!
CWE Most Important Hardware Weaknesses
CWE Top 25 Most Dangerous Weaknesses
Home > CWE List > CWE- Individual Dictionary Definition (4.15)  
ID

CWE-1224: Improper Restriction of Write-Once Bit Fields

Weakness ID: 1224
Vulnerability Mapping: ALLOWEDThis CWE ID may be used to map to real-world vulnerabilities
Abstraction: BaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The hardware design control register "sticky bits" or write-once bit fields are improperly implemented, such that they can be reprogrammed by software.
+ Extended Description

Integrated circuits and hardware IP software programmable controls and settings are commonly stored in register circuits. These register contents have to be initialized at hardware reset to define default values that are hard coded in the hardware description language (HDL) code of the hardware unit. A common security protection method used to protect register settings from modification by software is to make the settings write-once or "sticky." This allows writing to such registers only once, whereupon they become read-only. This is useful to allow initial boot software to configure systems settings to secure values while blocking runtime software from modifying such hardware settings.

Failure to implement write-once restrictions in hardware design can expose such registers to being re-programmed by software and written multiple times. For example, write-once fields could be implemented to only be write-protected if they have been set to value "1", wherein they would work as "write-1-once" and not "write-once".

+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
ScopeImpactLikelihood
Confidentiality
Integrity
Availability
Access Control

Technical Impact: Varies by Context

System configuration cannot be programmed in a secure way.
+ Potential Mitigations

Phase: Architecture and Design

During hardware design all register write-once or sticky fields must be evaluated for proper configuration.

Phase: Testing

The testing phase should use automated tools to test that values are not reprogrammable and that write-once fields lock on writing zeros.
+ Relationships
Section HelpThis table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (CWE-1000)
NatureTypeIDName
ChildOfPillarPillar - a weakness that is the most abstract type of weakness and represents a theme for all class/base/variant weaknesses related to it. A Pillar is different from a Category as a Pillar is still technically a type of weakness that describes a mistake, while a Category represents a common characteristic used to group related things.284Improper Access Control
Section HelpThis table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Hardware Design" (CWE-1194)
NatureTypeIDName
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.1199General Circuit and Logic Design Concerns
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
PhaseNote
Architecture and Design
ImplementationSuch issues could be introduced during implementation of hardware design, since IP parameters and defaults are defined in HDL code and identified later during Testing or System Configuration phases.
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

Verilog (Undetermined Prevalence)

VHDL (Undetermined Prevalence)

Technologies

Class: System on Chip (Undetermined Prevalence)

+ Demonstrative Examples

Example 1

Consider the example design module system verilog code shown below. register_write_once_example module is an example of register that has a write-once field defined. Bit 0 field captures the write_once_status value. This implementation can be for a register that is defined by specification to be a write-once register, since the write_once_status field gets written by input data bit 0 on first write.

(bad code)
Example Language: Verilog 
module register_write_once_example
(
input [15:0] Data_in,
input Clk,
input ip_resetn,
input global_resetn,
input write,
output reg [15:0] Data_out
);

reg Write_once_status;

always @(posedge Clk or negedge ip_resetn)
if (~ip_resetn)
begin
Data_out <= 16'h0000;
Write_once_status <= 1'b0;
end
else if (write & ~Write_once_status)
begin
Data_out <= Data_in & 16'hFFFE;
Write_once_status <= Data_in[0]; // Input bit 0 sets Write_once_status
end
else if (~write)
begin
Data_out[15:1] <= Data_out[15:1];
Data_out[0] <= Write_once_status;
end
endmodule

The above example only locks further writes if write_once_status bit is written to one. So it acts as write_1-Once instead of the write-once attribute.

(good code)
Example Language: Verilog 
module register_write_once_example
(
input [15:0] Data_in,
input Clk,
input ip_resetn,
input global_resetn,
input write,
output reg [15:0] Data_out
);

reg Write_once_status;

always @(posedge Clk or negedge ip_resetn)
if (~ip_resetn)
begin
Data_out <= 16'h0000;
Write_once_status <= 1'b0;
end
else if (write & ~Write_once_status)
begin
Data_out <= Data_in & 16'hFFFE;
Write_once_status <= 1'b1; // Write once status set on first write, independent of input
end
else if (~write)
begin
Data_out[15:1] <= Data_out[15:1];
Data_out[0] <= Write_once_status;
end

endmodule

+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
NatureTypeIDName
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.1396Comprehensive Categorization: Access Control
+ Vulnerability Mapping Notes

Usage: ALLOWED

(this CWE ID could be used to map to real-world vulnerabilities)

Reason: Acceptable-Use

Rationale:

This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments:

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Content History
+ Submissions
Submission DateSubmitterOrganization
2019-12-12
(CWE 4.0, 2020-02-24)
Arun Kanuparthi, Hareesh Khattri, Parbati Kumar Manna, Narasimha Kumar V MangipudiIntel Corporation
+ Modifications
Modification DateModifierOrganization
2020-08-20CWE Content TeamMITRE
updated Related_Attack_Patterns
2022-04-28CWE Content TeamMITRE
updated Related_Attack_Patterns
2022-10-13CWE Content TeamMITRE
updated Demonstrative_Examples
2023-04-27CWE Content TeamMITRE
updated Relationships
2023-06-29CWE Content TeamMITRE
updated Mapping_Notes
Page Last Updated: July 16, 2024