CWE-1239: Improper Zeroization of Hardware Register
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe hardware product does not properly clear sensitive information from built-in registers when the user of the hardware block changes.
Hardware logic operates on data stored in registers local to the hardware block. Most hardware IPs, including cryptographic accelerators, rely on registers to buffer I/O, store intermediate values, and interface with software. The result of this is that sensitive information, such as passwords or encryption keys, can exist in locations not transparent to the user of the hardware logic. When a different entity obtains access to the IP due to a change in operating mode or conditions, the new entity can extract information belonging to the previous user if no mechanisms are in place to clear register contents. It is important to clear information stored in the hardware if a physical attack on the product is detected, or if the user of the hardware block changes. The process of clearing register contents in a hardware IP is referred to as zeroization in standards for cryptographic hardware modules such as FIPS-140-2 [REF-267].
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Hardware Design" (CWE-1194)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages Class: Not Language-Specific (Undetermined Prevalence) Operating Systems Class: Not OS-Specific (Undetermined Prevalence) Architectures Class: Not Architecture-Specific (Undetermined Prevalence) Technologies Class: System on Chip (Undetermined Prevalence) Example 1 Suppose a hardware IP for implementing an encryption routine works as expected, but it leaves the intermediate results in some registers that can be accessed. Exactly why this access happens is immaterial - it might be unintentional or intentional, where the designer wanted a "quick fix" for something. Example 2 The example code below [REF-1379] is taken from the SHA256 Interface/wrapper controller module of the HACK@DAC'21 buggy OpenPiton SoC. Within the wrapper module there are a set of 16 memory-mapped registers referenced data[0] to data[15]. These registers are 32 bits in size and are used to store the data received on the AXI Lite interface for hashing. Once both the message to be hashed and a request to start the hash computation are received, the values of these registers will be forwarded to the underlying SHA256 module for processing. Once forwarded, the values in these registers no longer need to be retained. In fact, if not cleared or overwritten, these sensitive values can be read over the AXI Lite interface, potentially compromising any previously confidential data stored therein. (bad code)
Example Language: Verilog
...
// Implement SHA256 I/O memory map interface
...// Write side always @(posedge clk_i)
begin
if(~(rst_ni && ~rst_3))
begin
startHash <= 0;
newMessage <= 0; data[0] <= 0; data[1] <= 0; data[2] <= 0; ... data[14] <= 0; data[15] <= 0; In the previous code snippet [REF-1379] there is the lack of a data clearance mechanism for the memory-mapped I/O registers after their utilization. These registers get cleared only when a reset condition is met. This condition is met when either the global negative-edge reset input signal (rst_ni) or the dedicated reset input signal for SHA256 peripheral (rst_3) is active. In other words, if either of these reset signals is true, the registers will be cleared. However, in cases where there is not a reset condition these registers retain their values until the next hash operation. It is during the time between an old hash operation and a new hash operation that that data is open to unauthorized disclosure. To correct the issue of data persisting between hash operations, the memory mapped I/O registers need to be cleared once the values written in these registers are propagated to the SHA256 module. This could be done for example by adding a new condition to zeroize the memory mapped I/O registers once the hash value is computed, i.e., hashValid signal asserted, as shown in the good code example below [REF-1380]. This fix will clear the memory-mapped I/O registers after the data has been provided as input to the SHA engine. (good code)
Example Language: Verilog
...
// Implement SHA256 I/O memory map interface
...// Write side always @(posedge clk_i)
begin
if(~(rst_ni && ~rst_3))
begin
else if(hashValid && ~hashValid_r)
startHash <= 0;
endnewMessage <= 0; data[0] <= 0; data[1] <= 0; data[2] <= 0; ... data[14] <= 0; data[15] <= 0;
begin
data[0] <= 0;
enddata[1] <= 0; data[2] <= 0; ... data[14] <= 0; data[15] <= 0;
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
More information is available — Please edit the custom filter or select a different filter. |
Use of the Common Weakness Enumeration (CWE™) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006–2024, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation. |