CWE

Common Weakness Enumeration

A community-developed list of SW & HW weaknesses that can become vulnerabilities

New to CWE? click here!
CWE Most Important Hardware Weaknesses
CWE Top 25 Most Dangerous Weaknesses
Home > CWE List > CWE-499: Serializable Class Containing Sensitive Data (4.16)  
ID

CWE-499: Serializable Class Containing Sensitive Data

Weakness ID: 499
Vulnerability Mapping: ALLOWED This CWE ID may be used to map to real-world vulnerabilities
Abstraction: Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The code contains a class with sensitive data, but the class does not explicitly deny serialization. The data can be accessed by serializing the class through another class.
+ Extended Description
Serializable classes are effectively open classes since data cannot be hidden in them. Classes that do not explicitly deny serialization can be serialized by any other class, which can then in turn use the data stored inside it.
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Scope Impact Likelihood
Confidentiality

Technical Impact: Read Application Data

an attacker can write out the class to a byte stream, then extract the important data from it.
+ Potential Mitigations

Phase: Implementation

In Java, explicitly define final writeObject() to prevent serialization. This is the recommended solution. Define the writeObject() function to throw an exception explicitly denying serialization.

Phase: Implementation

Make sure to prevent serialization of your objects.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (CWE-1000)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 668 Exposure of Resource to Wrong Sphere
CanPrecede Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 200 Exposure of Sensitive Information to an Unauthorized Actor
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Implementation
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

Java (Undetermined Prevalence)

+ Likelihood Of Exploit
High
+ Demonstrative Examples

Example 1

This code creates a new record for a medical patient:

(bad code)
Example Language: Java 
class PatientRecord {
private String name;
private String socialSecurityNum;
public Patient(String name,String ssn) {
this.SetName(name);
this.SetSocialSecurityNumber(ssn);
}
}

This object does not explicitly deny serialization, allowing an attacker to serialize an instance of this object and gain a patient's name and Social Security number even though those fields are private.


+ Detection Methods

Automated Static Analysis

Automated static analysis, commonly referred to as Static Application Security Testing (SAST), can find some instances of this weakness by analyzing source code (or binary/compiled code) without having to execute it. Typically, this is done by building a model of data flow and control flow, then searching for potentially-vulnerable patterns that connect "sources" (origins of input) with "sinks" (destinations where the data interacts with external components, a lower layer such as the OS, etc.)

Effectiveness: High

+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 858 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 15 - Serialization (SER)
MemberOf ViewView - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 884 CWE Cross-section
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 963 SFP Secondary Cluster: Exposed Data
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1148 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 14. Serialization (SER)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1403 Comprehensive Categorization: Exposed Resource
+ Vulnerability Mapping Notes

Usage: ALLOWED

(this CWE ID may be used to map to real-world vulnerabilities)

Reason: Acceptable-Use

Rationale:

This CWE entry is at the Variant level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments:

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Information leak through serialization
The CERT Oracle Secure Coding Standard for Java (2011) SER03-J Do not serialize unencrypted, sensitive data
The CERT Oracle Secure Coding Standard for Java (2011) SER05-J Do not serialize instances of inner classes
Software Fault Patterns SFP23 Exposed Data
+ References
[REF-18] Secure Software, Inc.. "The CLASP Application Security Process". 2005. <https://cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf>. URL validated: 2024-11-17.
+ Content History
+ Submissions
Submission Date Submitter Organization
2006-07-19
(CWE Draft 3, 2006-07-19)
CLASP
+ Modifications
Modification Date Modifier Organization
2008-07-01 Eric Dalci Cigital
updated Time_of_Introduction
2008-09-08 CWE Content Team MITRE
updated Common_Consequences, Description, Relationships, Taxonomy_Mappings
2009-07-27 CWE Content Team MITRE
updated Demonstrative_Examples
2011-06-01 CWE Content Team MITRE
updated Common_Consequences, Relationships, Taxonomy_Mappings
2012-05-11 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2012-10-30 CWE Content Team MITRE
updated Demonstrative_Examples
2014-07-30 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2017-11-08 CWE Content Team MITRE
updated Relationships
2019-01-03 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2020-02-24 CWE Content Team MITRE
updated References, Relationships
2021-03-15 CWE Content Team MITRE
updated Relationships
2023-04-27 CWE Content Team MITRE
updated Detection_Factors, Relationships
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
+ Previous Entry Names
Change Date Previous Entry Name
2008-04-11 Information Leak through Serialization
Page Last Updated: November 19, 2024