CWE-552: Files or Directories Accessible to External Parties
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product makes files or directories accessible to unauthorized actors, even though they should not be.
Web servers, FTP servers, and similar servers may store a set of files underneath a "root" directory that is accessible to the server's users. Applications may store sensitive files underneath this root without also using access control to limit which users may request those files, if any. Alternately, an application might package multiple files or directories into an archive file (e.g., ZIP or tar), but the application might not exclude sensitive files that are underneath those directories. In cloud technologies and containers, this weakness might present itself in the form of misconfigured storage accounts that can be read or written by a public or anonymous user. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (CWE-1003)
Relevant to the view "Architectural Concepts" (CWE-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages Class: Not Language-Specific (Undetermined Prevalence) Technologies Class: Not Technology-Specific (Undetermined Prevalence) Class: Cloud Computing (Often Prevalent) Example 1 The following Azure command updates the settings for a storage account: (bad code)
Example Language: Shell
az storage account update --name <storage-account> --resource-group <resource-group> --allow-blob-public-access true
However, "Allow Blob Public Access" is set to true, meaning that anonymous/public users can access blobs. The command could be modified to disable "Allow Blob Public Access" by setting it to false. (good code)
Example Language: Shell
az storage account update --name <storage-account> --resource-group <resource-group> --allow-blob-public-access false
Example 2 The following Google Cloud Storage command gets the settings for a storage account named 'BUCKET_NAME': (informative)
Example Language: Shell
gsutil iam get gs://BUCKET_NAME
Suppose the command returns the following result: (bad code)
Example Language: JSON
{
"bindings":[{
}
"members":[
},
"projectEditor: PROJECT-ID",
],"projectOwner: PROJECT-ID" "role":"roles/storage.legacyBucketOwner" {
"members":[
]
"allUsers",
}"projectViewer: PROJECT-ID" ], "role":"roles/storage.legacyBucketReader" This result includes the "allUsers" or IAM role added as members, causing this policy configuration to allow public access to cloud storage resources. There would be a similar concern if "allAuthenticatedUsers" was present. The command could be modified to remove "allUsers" and/or "allAuthenticatedUsers" as follows: (good code)
Example Language: Shell
gsutil iam ch -d allUsers gs://BUCKET_NAME
gsutil iam ch -d allAuthenticatedUsers gs://BUCKET_NAME
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
More information is available — Please edit the custom filter or select a different filter. |
Use of the Common Weakness Enumeration (CWE™) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006–2024, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation. |