CWE

Common Weakness Enumeration

A community-developed list of SW & HW weaknesses that can become vulnerabilities

New to CWE? click here!
CWE Most Important Hardware Weaknesses
CWE Top 25 Most Dangerous Weaknesses
Home > CWE List > CWE-594: J2EE Framework: Saving Unserializable Objects to Disk (4.16)  
ID

CWE-594: J2EE Framework: Saving Unserializable Objects to Disk

Weakness ID: 594
Vulnerability Mapping: ALLOWED This CWE ID may be used to map to real-world vulnerabilities
Abstraction: Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
When the J2EE container attempts to write unserializable objects to disk there is no guarantee that the process will complete successfully.
+ Extended Description
In heavy load conditions, most J2EE application frameworks flush objects to disk to manage memory requirements of incoming requests. For example, session scoped objects, and even application scoped objects, are written to disk when required. While these application frameworks do the real work of writing objects to disk, they do not enforce that those objects be serializable, thus leaving the web application vulnerable to crashes induced by serialization failure. An attacker may be able to mount a denial of service attack by sending enough requests to the server to force the web application to save objects to disk.
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Scope Impact Likelihood
Integrity

Technical Impact: Modify Application Data

Data represented by unserializable objects can be corrupted.
Availability

Technical Impact: DoS: Crash, Exit, or Restart

Non-serializability of objects can lead to system crash.
+ Potential Mitigations

Phases: Architecture and Design; Implementation

All objects that become part of session and application scope must implement the java.io.Serializable interface to ensure serializability of containing objects.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (CWE-1000)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 1076 Insufficient Adherence to Expected Conventions
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Implementation
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

Java (Undetermined Prevalence)

+ Demonstrative Examples

Example 1

In the following Java example, a Customer Entity JavaBean provides access to customer information in a database for a business application. The Customer Entity JavaBean is used as a session scoped object to return customer information to a Session EJB.

(bad code)
Example Language: Java 
@Entity
public class Customer {
private String id;
private String firstName;
private String lastName;
private Address address;

public Customer() {
}

public Customer(String id, String firstName, String lastName) {...}

@Id
public String getCustomerId() {...}

public void setCustomerId(String id) {...}

public String getFirstName() {...}

public void setFirstName(String firstName) {...}

public String getLastName() {...}

public void setLastName(String lastName) {...}

@OneToOne()
public Address getAddress() {...}

public void setAddress(Address address) {...}


}

However, the Customer Entity JavaBean is an unserialized object which can cause serialization failure and crash the application when the J2EE container attempts to write the object to the system. Session scoped objects must implement the Serializable interface to ensure that the objects serialize properly.

(good code)
Example Language: Java 
public class Customer implements Serializable {...}

+ Weakness Ordinalities
Ordinality Description
Indirect
(where the weakness is a quality issue that might indirectly make it easier to introduce security-relevant weaknesses or make them more difficult to detect)
Primary
(where the weakness exists independent of other weaknesses)
+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 998 SFP Secondary Cluster: Glitch in Computation
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1412 Comprehensive Categorization: Poor Coding Practices
+ Vulnerability Mapping Notes

Usage: ALLOWED

(this CWE ID may be used to map to real-world vulnerabilities)

Reason: Acceptable-Use

Rationale:

This CWE entry is at the Variant level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments:

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
Software Fault Patterns SFP1 Glitch in computation
+ Content History
+ Submissions
Submission Date Submitter Organization
2006-12-15
(CWE Draft 5, 2006-12-15)
CWE Community
Submitted by members of the CWE community to extend early CWE versions
+ Modifications
Modification Date Modifier Organization
2008-07-01 Eric Dalci Cigital
updated Time_of_Introduction
2008-09-08 CWE Content Team MITRE
updated Common_Consequences, Relationships, Other_Notes
2010-02-16 CWE Content Team MITRE
updated Demonstrative_Examples
2011-06-01 CWE Content Team MITRE
updated Common_Consequences
2012-05-11 CWE Content Team MITRE
updated Relationships
2012-10-30 CWE Content Team MITRE
updated Potential_Mitigations
2014-06-23 CWE Content Team MITRE
updated Description, Other_Notes
2014-07-30 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2017-11-08 CWE Content Team MITRE
updated Relationships
2019-01-03 CWE Content Team MITRE
updated Weakness_Ordinalities
2020-02-24 CWE Content Team MITRE
updated Relationships
2023-04-27 CWE Content Team MITRE
updated Relationships, Time_of_Introduction
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
2024-02-29
(CWE 4.14, 2024-02-29)
CWE Content Team MITRE
updated Relationships
+ Previous Entry Names
Change Date Previous Entry Name
2008-04-11 Persistence in J2EE Frameworks
Page Last Updated: November 19, 2024