CWE

Common Weakness Enumeration

A community-developed list of SW & HW weaknesses that can become vulnerabilities

New to CWE? click here!
CWE Most Important Hardware Weaknesses
CWE Top 25 Most Dangerous Weaknesses
Home > CWE List > CWE-656: Reliance on Security Through Obscurity (4.16)  
ID

CWE-656: Reliance on Security Through Obscurity

Weakness ID: 656
Vulnerability Mapping: ALLOWED This CWE ID could be used to map to real-world vulnerabilities in limited situations requiring careful review (with careful review of mapping notes)
Abstraction: Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product uses a protection mechanism whose strength depends heavily on its obscurity, such that knowledge of its algorithms or key data is sufficient to defeat the mechanism.
+ Extended Description
This reliance on "security through obscurity" can produce resultant weaknesses if an attacker is able to reverse engineer the inner workings of the mechanism. Note that obscurity can be one small part of defense in depth, since it can create more work for an attacker; however, it is a significant risk if used as the primary means of protection.
+ Alternate Terms
Never Assuming your secrets are safe
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Scope Impact Likelihood
Confidentiality
Integrity
Availability
Other

Technical Impact: Other

The security mechanism can be bypassed easily.
+ Potential Mitigations

Phase: Architecture and Design

Always consider whether knowledge of your code or design is sufficient to break it. Reverse engineering is a highly successful discipline, and financially feasible for motivated adversaries. Black-box techniques are established for binary analysis of executables that use obfuscation, runtime analysis of proprietary protocols, inferring file formats, and others.

Phase: Architecture and Design

When available, use publicly-vetted algorithms and procedures, as these are more likely to undergo more extensive security analysis and testing. This is especially the case with encryption and authentication.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (CWE-1000)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 657 Violation of Secure Design Principles
ChildOf Pillar Pillar - a weakness that is the most abstract type of weakness and represents a theme for all class/base/variant weaknesses related to it. A Pillar is different from a Category as a Pillar is still technically a type of weakness that describes a mistake, while a Category represents a common characteristic used to group related things. 693 Protection Mechanism Failure
PeerOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 603 Use of Client-Side Authentication
CanPrecede Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 259 Use of Hard-coded Password
CanPrecede Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 321 Use of Hard-coded Cryptographic Key
CanPrecede Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 472 External Control of Assumed-Immutable Web Parameter
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Software Development" (CWE-699)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 1006 Bad Coding Practices
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Architectural Concepts" (CWE-1008)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 1011 Authorize Actors
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Architecture and Design
Implementation REALIZATION: This weakness is caused during implementation of an architectural security tactic.
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

Class: Not Language-Specific (Undetermined Prevalence)

+ Demonstrative Examples

Example 1

The design of TCP relies on the secrecy of Initial Sequence Numbers (ISNs), as originally covered in CVE-1999-0077 [REF-542]. If ISNs can be guessed (due to predictability, CWE-330) or sniffed (due to lack of encryption during transmission, CWE-312), then an attacker can hijack or spoof connections. Many TCP implementations have had variations of this problem over the years, including CVE-2004-0641, CVE-2002-1463, CVE-2001-0751, CVE-2001-0328, CVE-2001-0288, CVE-2001-0163, CVE-2001-0162, CVE-2000-0916, and CVE-2000-0328.

Example 1 References:
[REF-542] Jon Postel, Editor. "RFC: 793, TRANSMISSION CONTROL PROTOCOL". Information Sciences Institute. 1981-09. <https://www.ietf.org/rfc/rfc0793.txt>. URL validated: 2023-04-07.

+ Observed Examples
Reference Description
Reliance on hidden form fields in a web application. Many web application vulnerabilities exist because the developer did not consider that "hidden" form fields can be processed using a modified client.
Hard-coded cryptographic key stored in executable program.
Hard-coded cryptographic key stored in executable program.
Hard-coded hashed values for username and password contained in client-side script, allowing brute-force offline attacks.
+ Weakness Ordinalities
Ordinality Description
Primary
(where the weakness exists independent of other weaknesses)
+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 975 SFP Secondary Cluster: Architecture
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1348 OWASP Top Ten 2021 Category A04:2021 - Insecure Design
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1418 Comprehensive Categorization: Violation of Secure Design Principles
+ Vulnerability Mapping Notes

Usage: ALLOWED-WITH-REVIEW

(this CWE ID could be used to map to real-world vulnerabilities in limited situations requiring careful review)

Reason: Abstraction

Rationale:

This CWE entry is a Class and might have Base-level children that would be more appropriate

Comments:

Examine children of this entry to see if there is a better fit
+ Notes

Relationship

Note that there is a close relationship between this weakness and CWE-603 (Use of Client-Side Authentication). If developers do not believe that a user can reverse engineer a client, then they are more likely to choose client-side authentication in the belief that it is safe.
+ References
[REF-196] Jerome H. Saltzer and Michael D. Schroeder. "The Protection of Information in Computer Systems". Proceedings of the IEEE 63. 1975-09. <http://web.mit.edu/Saltzer/www/publications/protection/>.
[REF-544] Sean Barnum and Michael Gegick. "Never Assuming that Your Secrets Are Safe". 2005-09-14. <https://web.archive.org/web/20220126060054/https://www.cisa.gov/uscert/bsi/articles/knowledge/principles/never-assuming-that-your-secrets-are-safe>. URL validated: 2023-04-07.
[REF-542] Jon Postel, Editor. "RFC: 793, TRANSMISSION CONTROL PROTOCOL". Information Sciences Institute. 1981-09. <https://www.ietf.org/rfc/rfc0793.txt>. URL validated: 2023-04-07.
+ Content History
+ Submissions
Submission Date Submitter Organization
2008-01-18
(CWE Draft 8, 2008-01-30)
Pascal Meunier Purdue University
+ Modifications
Modification Date Modifier Organization
2008-07-01 Eric Dalci Cigital
updated Time_of_Introduction
2008-09-08 CWE Content Team MITRE
updated Common_Consequences, Description, Relationships, Other_Notes, Weakness_Ordinalities
2009-01-12 CWE Content Team MITRE
updated Description, Name
2010-04-05 CWE Content Team MITRE
updated Related_Attack_Patterns
2011-06-01 CWE Content Team MITRE
updated Common_Consequences
2012-05-11 CWE Content Team MITRE
updated Relationships
2012-10-30 CWE Content Team MITRE
updated Potential_Mitigations
2014-06-23 CWE Content Team MITRE
updated Other_Notes, Relationship_Notes
2014-07-30 CWE Content Team MITRE
updated Relationships
2017-11-08 CWE Content Team MITRE
updated Applicable_Platforms, Causal_Nature, Modes_of_Introduction, Relationships
2019-06-20 CWE Content Team MITRE
updated Related_Attack_Patterns
2020-02-24 CWE Content Team MITRE
updated Relationships, Time_of_Introduction
2021-03-15 CWE Content Team MITRE
updated Relationships
2021-10-28 CWE Content Team MITRE
updated Relationships
2022-10-13 CWE Content Team MITRE
updated Demonstrative_Examples, References
2023-01-31 CWE Content Team MITRE
updated Description
2023-04-27 CWE Content Team MITRE
updated Demonstrative_Examples, References, Relationships, Type
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
2023-10-26 CWE Content Team MITRE
updated Demonstrative_Examples
+ Previous Entry Names
Change Date Previous Entry Name
2009-01-12 Design Principle Violation: Reliance on Security through Obscurity
Page Last Updated: November 19, 2024