CWE-782: Exposed IOCTL with Insufficient Access Control
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product implements an IOCTL with functionality that should be restricted, but it does not properly enforce access control for the IOCTL.
When an IOCTL contains privileged functionality and is exposed unnecessarily, attackers may be able to access this functionality by invoking the IOCTL. Even if the functionality is benign, if the programmer has assumed that the IOCTL would only be accessed by a trusted process, there may be little or no validation of the incoming data, exposing weaknesses that would never be reachable if the attacker cannot call the IOCTL directly. The implementations of IOCTLs will differ between operating system types and versions, so the methods of attack and prevention may vary widely. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Architectural Concepts" (CWE-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Often Prevalent) C++ (Often Prevalent) Operating Systems Class: Unix (Undetermined Prevalence) Class: Windows (Undetermined Prevalence)
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship
This can be primary to many other weaknesses when the programmer assumes that the IOCTL can only be accessed by trusted parties. For example, a program or driver might not validate incoming addresses in METHOD_NEITHER IOCTLs in Windows environments (CWE-781), which could allow buffer overflow and similar attacks to take place, even when the attacker never should have been able to access the IOCTL at all.
Applicable Platform Because IOCTL functionality is typically performing low-level actions and closely interacts with the operating system, this weakness may only appear in code that is written in low-level languages.
More information is available — Please edit the custom filter or select a different filter. |
Use of the Common Weakness Enumeration (CWE™) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006–2024, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation. |