CWE-939: Improper Authorization in Handler for Custom URL Scheme
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product uses a handler for a custom URL scheme, but it does not properly restrict which actors can invoke the handler using the scheme.
Mobile platforms and other architectures allow the use of custom URL schemes to facilitate communication between applications. In the case of iOS, this is the only method to do inter-application communication. The implementation is at the developer's discretion which may open security flaws in the application. An example could be potentially dangerous functionality such as modifying files through a custom URL scheme.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
Relevant to the view "Architectural Concepts" (CWE-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Technologies Class: Mobile (Undetermined Prevalence) Example 1 This iOS application uses a custom URL scheme. The replaceFileText action in the URL scheme allows an external application to interface with the file incomingMessage.txt and replace the contents with the text field of the query string. External Application (good code)
Example Language: Objective-C
NSString *stringURL = @"appscheme://replaceFileText?file=incomingMessage.txt&text=hello";
NSURL *url = [NSURL URLWithString:stringURL]; [[UIApplication sharedApplication] openURL:url]; Application URL Handler (bad code)
- (BOOL)application:(UIApplication *)application handleOpenURL:(NSURL *)url { if (!url) { }return NO; }NSString *action = [url host]; if([action isEqualToString: @"replaceFileText"]) { NSDictionary *dict = [self parseQueryStringExampleFunction:[url query]]; }//this function will write contents to a specified file FileObject *objectFile = [self writeToFile:[dict objectForKey: @"file"] withText:[dict objectForKey: @"text"]]; return YES; The handler has no restriction on who can use its functionality. The handler can be invoked using any method that invokes the URL handler such as the following malicious iframe embedded on a web page opened by Safari. (attack code)
Example Language: HTML
<iframe src="appscheme://replaceFileText?file=Bookmarks.dat&text=listOfMaliciousWebsites">
The attacker can host a malicious website containing the iframe and trick users into going to the site via a crafted phishing email. Since Safari automatically executes iframes, the user is not prompted when the handler executes the iframe code which automatically invokes the URL handler replacing the bookmarks file with a list of malicious websites. Since replaceFileText is a potentially dangerous action, an action that modifies data, there should be a sanity check before the writeToFile:withText: function. Example 2 These Android and iOS applications intercept URL loading within a WebView and perform special actions if a particular URL scheme is used, thus allowing the Javascript within the WebView to communicate with the application: (bad code)
Example Language: Java
// Android
@Override public boolean shouldOverrideUrlLoading(WebView view, String url){ if (url.substring(0,14).equalsIgnoreCase("examplescheme:")){
if(url.substring(14,25).equalsIgnoreCase("getUserInfo")){ }writeDataToView(view, UserData); }return false; else{ return true; }(bad code)
Example Language: Objective-C
// iOS
-(BOOL) webView:(UIWebView *)exWebView shouldStartLoadWithRequest:(NSURLRequest *)exRequest navigationType:(UIWebViewNavigationType)exNavigationType { NSURL *URL = [exRequest URL];
if ([[URL scheme] isEqualToString:@"exampleScheme"]) { NSString *functionString = [URL resourceSpecifier];
if ([functionString hasPrefix:@"specialFunction"]) { // Make data available back in webview. UIWebView *webView = [self writeDataToView:[URL query]]; return NO; return YES; A call into native code can then be initiated by passing parameters within the URL: (attack code)
Example Language: JavaScript
window.location = examplescheme://method?parameter=value
Because the application does not check the source, a malicious website loaded within this WebView has the same access to the API as a trusted site.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
More information is available — Please edit the custom filter or select a different filter. |
Use of the Common Weakness Enumeration (CWE™) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006–2024, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation. |