CWE

Common Weakness Enumeration

A community-developed list of SW & HW weaknesses that can become vulnerabilities

New to CWE? click here!
CWE Most Important Hardware Weaknesses
CWE Top 25 Most Dangerous Weaknesses
Home > CWE List > CWE-309: Use of Password System for Primary Authentication (4.16)  
ID

CWE-309: Use of Password System for Primary Authentication

Weakness ID: 309
Vulnerability Mapping: ALLOWED This CWE ID may be used to map to real-world vulnerabilities
Abstraction: Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The use of password systems as the primary means of authentication may be subject to several flaws or shortcomings, each reducing the effectiveness of the mechanism.
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Scope Impact Likelihood
Access Control

Technical Impact: Bypass Protection Mechanism; Gain Privileges or Assume Identity

A password authentication mechanism error will almost always result in attackers being authorized as valid users.
+ Potential Mitigations

Phase: Architecture and Design

In order to protect password systems from compromise, the following should be noted:

  • Passwords should be stored safely to prevent insider attack and to ensure that -- if a system is compromised -- the passwords are not retrievable. Due to password reuse, this information may be useful in the compromise of other systems these users work with. In order to protect these passwords, they should be stored encrypted, in a non-reversible state, such that the original text password cannot be extracted from the stored value.
  • Password aging should be strictly enforced to ensure that passwords do not remain unchanged for long periods of time. The longer a password remains in use, the higher the probability that it has been compromised. For this reason, passwords should require refreshing periodically, and users should be informed of the risk of passwords which remain in use for too long.
  • Password strength should be enforced intelligently. Rather than restrict passwords to specific content, or specific length, users should be encouraged to use upper and lower case letters, numbers, and symbols in their passwords. The system should also ensure that no passwords are derived from dictionary words.

Phase: Architecture and Design

Use a zero-knowledge password protocol, such as SRP.

Phase: Architecture and Design

Ensure that passwords are stored safely and are not reversible.

Phase: Architecture and Design

Implement password aging functionality that requires passwords be changed after a certain point.

Phase: Architecture and Design

Use a mechanism for determining the strength of a password and notify the user of weak password use.

Phase: Architecture and Design

Inform the user of why password protections are in place, how they work to protect data integrity, and why it is important to heed their warnings.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (CWE-1000)
Nature Type ID Name
ChildOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 654 Reliance on a Single Factor in a Security Decision
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 1390 Weak Authentication
PeerOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 262 Not Using Password Aging
PeerOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 308 Use of Single-factor Authentication
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Software Development" (CWE-699)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 1211 Authentication Errors
+ Background Details
Password systems are the simplest and most ubiquitous authentication mechanisms. However, they are subject to such well known attacks,and such frequent compromise that their use in the most simple implementation is not practical.
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Architecture and Design
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

Class: Not Language-Specific (Undetermined Prevalence)

+ Likelihood Of Exploit
High
+ Demonstrative Examples

Example 1

In both of these examples, a user is logged in if their given password matches a stored password:

(bad code)
Example Language:
unsigned char *check_passwd(char *plaintext) {
ctext = simple_digest("sha1",plaintext,strlen(plaintext), ... );
//Login if hash matches stored hash
if (equal(ctext, secret_password())) {
login_user();
}
}
(bad code)
Example Language: Java 
String plainText = new String(plainTextIn);
MessageDigest encer = MessageDigest.getInstance("SHA");
encer.update(plainTextIn);
byte[] digest = password.digest();
//Login if hash matches stored hash
if (equal(digest,secret_password())) {
login_user();
}

This code relies exclusively on a password mechanism (CWE-309) using only one factor of authentication (CWE-308). If an attacker can steal or guess a user's password, they are given full access to their account. Note this code also uses SHA-1, which is a weak hash (CWE-328). It also does not use a salt (CWE-759).


+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 724 OWASP Top Ten 2004 Category A3 - Broken Authentication and Session Management
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 947 SFP Secondary Cluster: Authentication Bypass
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1396 Comprehensive Categorization: Access Control
+ Vulnerability Mapping Notes

Usage: ALLOWED

(this CWE ID may be used to map to real-world vulnerabilities)

Reason: Acceptable-Use

Rationale:

This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments:

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Using password systems
OWASP Top Ten 2004 A3 CWE More Specific Broken Authentication and Session Management
+ References
[REF-18] Secure Software, Inc.. "The CLASP Application Security Process". 2005. <https://cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf>. URL validated: 2024-11-17.
+ Content History
+ Submissions
Submission Date Submitter Organization
2006-07-19
(CWE Draft 3, 2006-07-19)
CLASP
+ Modifications
Modification Date Modifier Organization
2008-08-15 Veracode
Suggested OWASP Top Ten 2004 mapping
2008-09-08 CWE Content Team MITRE
updated Background_Details, Common_Consequences, Relationships, Taxonomy_Mappings
2010-12-13 CWE Content Team MITRE
updated Common_Consequences
2011-06-01 CWE Content Team MITRE
updated Common_Consequences
2012-05-11 CWE Content Team MITRE
updated Relationships
2012-10-30 CWE Content Team MITRE
updated Demonstrative_Examples
2014-07-30 CWE Content Team MITRE
updated Relationships
2017-11-08 CWE Content Team MITRE
updated Applicable_Platforms, Likelihood_of_Exploit
2020-02-24 CWE Content Team MITRE
updated References, Relationships
2020-08-20 CWE Content Team MITRE
updated Related_Attack_Patterns
2021-03-15 CWE Content Team MITRE
updated Demonstrative_Examples
2022-10-13 CWE Content Team MITRE
updated Relationships
2023-04-27 CWE Content Team MITRE
updated Relationships
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
+ Previous Entry Names
Change Date Previous Entry Name
2008-04-11 Using Password Systems
Page Last Updated: November 19, 2024