CWE-831: Signal Handler Function Associated with Multiple Signals
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterWhile sometimes intentional and safe, when the same function is used to handle multiple signals, a race condition could occur if the function uses any state outside of its local declaration, such as global variables or non-reentrant functions, or has any side effects. An attacker could send one signal that invokes the handler function; in many OSes, this will typically prevent the same signal from invoking the handler again, at least until the handler function has completed execution. However, the attacker could then send a different signal that is associated with the same handler function. This could interrupt the original handler function while it is still executing. If there is shared state, then the state could be corrupted. This can lead to a variety of potential consequences depending on context, including denial of service and code execution. Another rarely-explored possibility arises when the signal handler is only designed to be executed once (if at all). By sending multiple signals, an attacker could invoke the function more than once. This may generate extra, unintended side effects. A race condition might not even be necessary; the attacker could send one signal, wait until it is handled, then send the other signal. ![]()
![]() ![]()
Example 1 This code registers the same signal handler function with two different signals. (bad code)
Example Language: C
void handler (int sigNum) {
... }int main (int argc, char* argv[]) { signal(SIGUSR1, handler) }signal(SIGUSR2, handler) Example 2 This code registers the same signal handler function with two different signals (CWE-831). If those signals are sent to the process, the handler creates a log message (specified in the first argument to the program) and exits. (bad code)
Example Language: C
char *logMessage;
void handler (int sigNum) { syslog(LOG_NOTICE, "%s\n", logMessage);
free(logMessage); /* artificially increase the size of the timing window to make demonstration of this weakness easier. */ sleep(10); exit(0); int main (int argc, char* argv[]) { logMessage = strdup(argv[1]);
/* Register signal handlers. */ signal(SIGHUP, handler); signal(SIGTERM, handler); /* artificially increase the size of the timing window to make demonstration of this weakness easier. */ sleep(10); The handler function uses global state (globalVar and logMessage), and it can be called by both the SIGHUP and SIGTERM signals. An attack scenario might follow these lines:
At this point, the state of the heap is uncertain, because malloc is still modifying the metadata for the heap; the metadata might be in an inconsistent state. The SIGTERM-handler call to free() is assuming that the metadata is inconsistent, possibly causing it to write data to the wrong location while managing the heap. The result is memory corruption, which could lead to a crash or even code execution, depending on the circumstances under which the code is running. Note that this is an adaptation of a classic example as originally presented by Michal Zalewski [REF-360]; the original example was shown to be exploitable for code execution. Also note that the strdup(argv[1]) call contains a potential buffer over-read (CWE-126) if the program is called without any arguments, because argc would be 0, and argv[1] would point outside the bounds of the array. ![]()
More information is available — Please edit the custom filter or select a different filter. |
Use of the Common Weakness Enumeration (CWE™) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006–2025, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation. |